

SILICAWOOD TABELLE TECNICHE

DRQTEC003 Rev. 01 del 19/04/10

Paaina 1 di 2

Il SILICAWOOD è stato sottoposto a numerose prove sperimentali effettuate dai più qualificati Centri Ricerche internazionali e nazionali, su campioni di numerosità variabile. Di seguito vengono presentati i principali risultati.

PANNELLI SILICAWOOD	Quantità di cemento		
DATI TECNICI	120 Kg/m ³	150 Kg/m ³	
Peso specifico	500 Kg/m ³	550 Kg/m³	
Massima variazione dimensionale umido/asciutto	1 mm/m	1 mm/m	
Conducibilità termica	0,09 W/m °K	0,09 W/m °K	
Resistenza alla compressione a rottura	1,96 N/mm ²	2,74 N/mm ²	

PROVE DI REAZIONE E RESISTENZA AL FUOCO	350 kg/m³ di cemento
Reazione al fuoco (10 cm SILICAWOOD®)	M1
Resistenza al fuoco (10 cm SILICAWOOD®)	REI 90
Reazione al fuoco (1 cm intonaco + 10 cm SILICAWOOD® + 1 cm intonaco)	M0
Resistenza al fuoco (1 cm intonaco + 10 cm SILICAWOOD® + 1 cm intonaco)	REI 180

Resistenza al gelo – SILICAWOOD 300 C.E.B.T.P. 3182-9-212-2 del 3.8.94 BC/CD.

Dopo 96 cicli di gelo e disgelo le provette non presentano alcun deterioramento e neanche dopo 146 cicli per una provetta mantenuta in invecchiamento.

Resistenza ai raggi U.V. – SILICAWOOD 300 C.E.B.T.P. 2352-9-616

Nessuna polverizzazione o altre degradazioni si sono verificate dopo 350 ore di esposizione ai raggi U.V.

Resistenza agli Archi Elettrici – SILICAWOOD 300 E.D.F HM 21/09-408 del 25.4.94

Non si sono riscontate infiammazioni, né perdita di spessore, né degrado di superfici sul campione.

Resistenza all'acqua e lancio di pietre – SILICAWOOD 300 C.E.B.T.P. n. 2322-9-031 JMT/JG del 24.12.93

Non si sono rilevati degradi di alcun genere.

Assorbimento Alpha-Sabine – SILICAWOOD 300 C.E.B.T.P 2312.6.471 del 29.9.93 e C.E.B.T.P.

2313.6.080 del 30.9.93 Ottimo comportamento.

C.E.B.T.P. Centre Experimental de Recherches et d'Etudes du Batiment et des Travaux Publics - Parigi.

I.T.L. Istituto per la Tecnologia del Legno - San Michele all'Adige (TN) E.D.F. Elettricità di Francia – Moret-sur-Loing (Marne)

Assorbimento acustico Istituto Giordano, Prova n. 131036 del 20/10/1999. Riferimenti normativi:

La prova è stata eseguita secondo le prescrizioni della norma ISO 354 del 1985 "Acoustics – Measurement of sound absorption in a reverberation room", utilizzando la procedura di prova interna PP016 "Misura del coefficiente di fonoassorbimento in camera riverbante" revisione 0 del 29/02/1996.

Coefficiente di assorbimento acustico pesato "αω" Valore a 500 Hz della curva di riferimento	0,75
Indicatore di forma* Intervallo di frequenze nel quale la curva " α_p " è superiore di 0,25 rispetto a quella di riferimento	H (4000 Hz)
Classe di assorbimento acustico (**)	С

*) L = Low M = Medium H = High

*) **A**: $\alpha_{\rm w} = 0.90 \ 0.95 \ 1.00$

B: $\alpha_w = 0.80 \ 0.85$

C: α_w = 0,60 0,65 0,70 0,75

D: α_w = 0,30 0,35 0,40 0,45 0,50 0,55

E: $\alpha_w = 0.15 \ 0.20 \ 0.25$

Non classificato: $\alpha_{w} = 0.00 \ 0.05 \ 0.10$

Valori di trasmittanza dei materiali più comunemente utilizzati in edilizia

La seguente tabella mette a confronto la trasmittanza di quattro tipologie comuni di pareti di tamponamento o portanti. L'isolamento termico posseduto dal Silicawood strutturale è di gran lunga superiore all'isolamento termico degli altri materiali da costruzione portanti (calcestruzzo, mattoni, mattoni alveolari, ecc.), come illustra la sequente tabella.

Materiale		cm.	Watt/ (m² K)	cal/ hm² K
MATTONI ALVEOLARI		30	0,540	0,460
CEMENTO CELLU	LARE	30	0,530	0,456
PARETE TRADIZIONALE	Mattoni forati	12	0,386	0,329
	Isolante tradizionale	6		
	Mattoni forati	12		
SILICAWOOD 300 PORTANTE		30	0,345	0,294

SILICAWOOD TABELLE TECNICHE

DRQTEC003 Rev. 01 del 19/04/10

Pagina 2 di 2

	Quantià d	Quantià di cemento	
CARATTERISTICHE TECNICHE DELLE PARETI PORTANTI IN SILICAWOOD	380 kg/m³	300 kg/m ³	
Peso specifico SILICAWOOD pressato fresco	1.320 Kg/m³	1.280 Kg/m³	
Peso specifico SILICAWOOD pressato indurito	1.288 Kg/m³	1.210 kg/m ³	
Aderenza del SILICAWOOD ai ferri di armatura (Ø 16, lunghezza 15 cm)	30.250 N	24.750 N	
Modulo elastico secante	3.006 N/mm²	2.727 N/mm ²	
Resistenza di compressione – Valore caratteristico	(*)	1,75 N/mm ²	
Conduttività termica "λ"	0,119 W/mK	(*)	
Conduttanza termica specifica (Cs)	1,44 W/m²K	(*)	
Incertezza massima probabile	1,80%	(*)	
Valore medio della velocità di trasmissione del vapore "g"	2654 mg/hm ²	3892 mg/hm²	
Valore medio della permeanza "W"	2,1mg/m²hPa	3,2 mg/m²hPa	
Valore medio del fattore di resistenza della diffusione "μ"	13	7,8	
Valore medio dello spessore d'aria equivalente "Sd"	35 cm	23 cm	
Valore medio della permeabilità al vapore "δ"	0,057 mg/mhPa	0,09 mg/mhPa	
Incertezza complessiva sulla permeabilità al vapore	8,10%	7,80%	
Coefficiente di assorbimento acustico pesato "aw"	0.75	(*)	
Indicatore di forma	alto	(*)	
Classe di assorbimento acustico	С	(*)	
Attenuazione di calpestio	10 db	(*)	
	38 db	(*)	

